Abstract

Abstract To prevent implant-associated infections, surface modifications need to be developed that prevent bacterial colonisation and biofilm formation. In the present study, titanium surfaces were processed by nanosecond-pulsed laser ablation to generate a variety of different structures (anatase, rutile, Osteon, as well as Osteon additionally coated with silver and clove nanoparticles). Analysis of adhesion and biofilm formation of the oral pioneer bacterium Streptococcus oralis could demonstrate antibacterial properties of anatase surfaces. For clinical translation, the effect should be enhanced by further adaption and combined with the osseointegrative Osteon structure

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.