Abstract

The main objective of this study was to develop data that would facilitate a consistently effective method of biological control of fire blight disease to be developed and to enable its implementation for disease control by ensuring its compatibility with variations in the biological, environmental, and chemical conditions present in pear orchards. As considerable information on the pathogen and biological control of fire blight was already gathered from studies in California and elsewhere, an emphasis was placed on investigating the genetics and ecology of Erwinia amylovora, the causal agent of fire blight in Israel. Studies of plasmid profile, virulence on several host, serological characteristics, as well as DNA fingerprints with selected primers all revealed E. amylovora strains in Israel to be homogeneous. Strains did vary in their resistance to streptomycin, with those from more northern locations being resistant while those in the southern costal plain were all sensitive to streptomycin. Resistance appeared to be conferred by chromosomal mutations as in streptomycin-resistant strains in California. The biological control agent Pseudomonas fluorescens strain A506 colonized flowers of both the Costia and Spodona pear cultivars in Israel as well as Bartlett pear in California. Flowers that were open at the time of spray inoculation of trees subsequently harbored from 105 to 107 cells of strain A506 per flower, while those that opened subsequent to spraying developed population sizes of about 105 cells/flower within 5 days. The incidence of fire blight infections were reduced about 3-fold in several trials in which moderate amounts of disease occurred in the plot areas; this degree of biological control is similar to that observed in California and elsewhere. On two occasions warm and moist weather that favored disease led to epidemics in which nearly all flowers became infected and which was so severe that neither P. fluorescens strain A506 nor chemical bactericides reduced disease incidence. A novel method for identifying antagonistic microorganisms for biological control of fire blight and other diseases was developed. A bacterial ice nucleation gene was introduced into E. amylovora to confer an Ice+ phenotype and the population sizes of this modified pathogen on flowers that had been pre-treated with potential control agents was estimated by measuring the freezing temperature of colonized flowers. Antagonistic strains that prevented the growth of E. amylovora in flowers were readily detected as those in which flowers froze at a low temperature. The method is both rapid and unbiased and several bacterial strains with substantial biological control potential have been identified using this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call