Abstract

ABSTRACTEvaluation of a recession-based “top-down” model for distributed hourly runoff simulation in macroscale mountainous catchments is rare in the literature. We evaluated such a model for a 3090 km2 boreal catchment and its internal sub-catchments. The main research question is how the model performs when parameters are either estimated from streamflow recession or obtained by calibration. The model reproduced observed streamflow hydrographs (Nash-Sutcliffe efficiency up to 0.83) and flow duration curves. Transferability of parameters to the sub-catchments validates the performance of the model, and indicates an opportunity for prediction in ungauged sites. However, the cases of parameter estimation and calibration excluding the effects of runoff routing underestimate peak flows. The lower end of the recession and the minimum length of recession segments included are the main sources of uncertainty for parameter estimation. Despite the small number of calibrated parameters, the model is susceptible to parameter uncertainty and identifiability problems.EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Carsteanu

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.