Abstract

Titanium and polyether-ether-ketone (PEEK) interbody cages are commonly used for spine fusion. Few data are known about bacterial and yeast biofilms formation in these implants. The aim of this study was to compare Staphylococcus aureus and Candida albicans biofilm formation in the surface of two different interbody devices used routinely in spine surgery. Six bodies of proof specimens of PEEK and titanium alloy were used for microbiological tests, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Experimental biofilm was produced with Staphylococcus aureus and Candida albicans, followed by quantitative analysis of planktonic cells and sessile cells. The comparison between the medians of biofilm quantification between the two models was performed using the Mann-Whitney test and considered the statistical difference for a p < 0.05. In the S. aureus model, in both planktonic and sessile cell counts, titanium-alloy samples showed lower values for colony forming units per milliliter (UFC/mL) (p < 0.05). The evaluation through the optic density of planktonic and sessile cells showed lower values in the titanium-alloy samples, however, only statistically significant in planktonic cell count (p < 0.05). The count of planktonic yeast cells in PEEK was similar to titanium-alloy samples, while the count of sessile yeast cells in titanium alloy was lower when compared to PEEK (p < 0.05). Titanium-alloy models were associated with less staphylococcal and Candida biofilm formation when compared with PEEK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call