Abstract

An increasing number of electromagnetic (EM) sensors are deployed to measure volumetric soil water content (θ) for agricultural, ecological, and geotechnical applications. While impedance and capacitance sensors generally operate at frequencies between 20–300 MHz, time domain‐reflectometry (TDR) and‐transmissometry (TDT) function in the GHz range. In general, lower frequency sensors are less expensive but more sensitive to confounding effects of salinity, temperature, and soil textural variations. To simplify sensor application, factory‐supplied calibrations are often provided for different porous media types such as mineral, organic, and saline soils, or soilless‐substrates. The objective of the presented study was to evaluate the performance of eight commercially available EM moisture sensing systems (TDR 100, CS616, Theta Probe, Hydra Probe, SM300, Wet2, 5TE, 10HS) in seven well‐characterized and texturally varying soils using a standardized approach. The validity of factory supplied‐calibration relationships was evaluated and the influence of soil properties on the EM responses for θ measurements was observed. Results indicate that the factory‐supplied calibration relationships for groups of mineral and organic soils in general performed well, but some inconsistences were identified and suggestions for improvement are discussed. Soil‐specific calibrations from this study yielded accuracies of around 0.015 m3m−3 for 10HS, SM300, and Theta Probe, while lower accuracies of about 0.025 m3 m−3 were found for TDR100, CS616, Wet2, 5TE, and the Hydra Probe. These results are based on mineral soils having a large variation in texture, electrical conductivities below 2 dS m−1, organic matter below 10%, and specific surface areas of less than 50 m2 g−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.