Abstract

Current standards such as NFPA 130 [1] require railcar floor assemblies to achieve a fire resistance rating according to ASTM E119 [2] by exposing the assemblies to a prescribed 30 minute time-temperature curve using a furnace. Though the ASTM E119 is a standard test procedure, it does not represent a real fire scenario which can have temporal and spatial varying exposure. This work developed a computational framework to evaluate and compare standard fire exposures such as ASTM E119 to real fire exposures to determine the difference in the temperature rise of a railcar floor assembly. The dimensions of the assembly used in this work consisted of the entire width of the railcar ∼3.0 m (10 ft) and a length of 3.7 m (12 ft) as described in NFPA 130. The real fire exposures simulated in this work have been identified in a review [3] of incidents involving fire exposures to railcars in the US and internationally over the past 50 years. The fire exposures consisted of a continuously fed diesel fuel spill, a localized trash fire, and a gasoline spill simulated from a collision of the railcar with an automobile. These realistic fire exposures were applied to a floor assembly model in Fire Dynamics Simulator (FDS) [4] which also included the undercarriage equipment to better capture the fire dynamics. The thermal exposure at the underside of railcar assembly was extracted using the heat transfer coefficient and the adiabatic surface temperature provided by FDS. These spatial-temporal exposures were coupled with a detailed railcar floor assembly finite element (FE) model in ABAQUS [5] to analyze the thermal behavior of the assembly. The thermal model in ABAQUS provided the evolution of temperature in different components of floor assembly consisting of a structural frame, insulation, and a composite floor. The standard scenarios were simulated for two hours instead of the typical 30 minutes to identify the appropriate exposure duration which can better represent a real fire scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.