Abstract

To evaluate sea ice concentrations (SICs) from the special sensor microwave/imager (SSM/I) and advanced microwave scanning radiometer-EOS (AMSR-E), we observed sea ice with the 6-m-resolution panchromatic electronic optical camera (EOC) sensor onboard the Korea Multi-Purpose Satellite-1 (KOMPSAT-1). A total of 68 cloud-free EOC images were obtained across the Antarctic continental edges from September to November 2005. Sea ice types in the EOC images were classified into white ice (W), gray ice (G), and dark-gray ice (D) and then compared with SSM/I and AMSR-E SICs. Spatiotemporal standard deviation of passive microwave SIC proved useful in selecting temporally stable and spatially homogeneous SICs to overcome the diurnal variation of sea ice in the analysis of data from multiple satellites. In the Antarctic spring, the EOC SIC of W + G showed the best fit to SSM/I SIC calculated by the NASA Team (NT) algorithm (mean difference of -2.3% and rmse of 3.2%), whereas that of W + G + D showed the best fit to AMSR-E SIC calculated by the NT2 algorithm (mean difference of 0.3% and rmse of 1.4%). It is concluded that the SSM/I NT algorithm responds to young ice in addition to the ice types A and B, whereas the AMSR-E NT2 algorithm detects ice type C and thin ice as well. The 4.7% difference of SICs between AMSR-E and SSM/I was attributed to the enhanced detection of ice type C (2.1%) and thin ice (2.6%) of the AMSR-E NT2 algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call