Abstract

Unpredictable environmental conditions lead to occurrence of large genotype by environment (G × E) interaction. It reduces the correlation between genotypic and phenotypic values and complicates selection of superior genotypes. The objective of this study was to estimate genotype by year (G × Y) interaction using AMMI model, to identify spring barley genotypes with stable and high yield performance and to observe association of different meteorological variables with tested growing seasons. The trials with 15 spring barley genotypes were conducted during seven years (1999–2005) at the location of Rimski Sancevi. The results showed that the influence of year (Y), genotype (G) and G × Y interaction on barley grain yield were significant (p < 0.01). Meteorological variables varied significantly from year to year and Y explained the highest percent of treatment variation (81%). The first three IPCA were significant and explained 83% of interaction variation. According to this study, it could be concluded that AMMI analysis provided an enhanced understanding of G × Y interaction in barley multi-years trials. Among the tested genotypes, LAV and NS 477 could be separated as highest yielding genotypes, however LAV could be recommended for further breeding program and large-scale production due to its stable and high yielding performance. It also provided better insight in specific association between spring barley grain yield and meteorological variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call