Abstract
A study was performed to investigate how different trunk and knee positions while holding static loads affect the lumbar curvature and internal loads on the lumbar spine at L4-L5. Ten healthy male subjects participated in this study. Two inclinometers were used to evaluate the curvature of lumbar spine, lordosis, while a 3D static biomechanical model was used to predict the spinal compression and shear forces at L4-L5. Eighteen static tasks while holding three level of load (0, 10 and 20 kg), two levels of knee position (45 and 180 degrees of flexion) and three levels of trunk position (neutral, 15 and 30 degree of flexion) were simulated for 10 healthy male subjects. The results of this study revealed that the lordosis of lumbar spine changed to kyphosis with increasing weight of load from 0 to 20 kg in trunk flexion position (p<0.05), but in squatting position (45 degrees knee full flexion) the higher load did not affect the curvature. The results of this study suggested, at a more flexed trunk and standing position with higher loads both external moment and internal loads increased significantly at L4-L5 level but with 45 knee flexion external moment and compression force increased and shear force decreased significantly (p < 0.05). Subjects made more effort to maintain stability of the body in squat position. The highest external moment and compression force were computed at flexed knee and trunk position with highest loads. Hence holding weight in this position must be avoided by implementing ergonomic change to the workplace.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.