Abstract

Rice cultivated areas and yield information is indispensable for sustainable management and economic policy making for this strategic food crop. Introduction of high spectral and special resolution satellite data has enabled production of such information in a timely and accurate manner. Knowledge of the spectral reflectance of various land covers is a prerequisite for their identification and study. Evaluation of the spectral reflectance of plants using field spectroradiometry provides the possibility to identify and map different rice varieties especially while using hyperspectral remote sensing. This paper reports the results of the first attempt to evaluate spectral signatures of seven north Iranian rice varieties (Fajr, Hybrid, Khazar, Nemat, Neda, Shiroudi and Tarom plots) in the experimental station of the Iranian Rice Research Institute (main station in Amol, Mazanderan Province). Measurements were carried out using a field spectroradiometer in the range of 350-2,500 nm under natural light and environmental conditions. In order to eliminate erroneous data and also experimental errors in spectral reflectance curves, all curves were individually quality controlled. A set of important vegetation indices sensitive to canopy chlorophyll content, photosynthesis intensity, nitrogen and water content were employed to enhance probable differences in spectral reflectance among various rice varieties. Analysis of variance and Tukey’s paired test were then used to compare rice varieties. Using Datt and PRI1 indices, significant differences ( α α α α= 0.01) were found among rice varieties reflectances in 19 out of 21 cases. This promises the possibility of accurate mapping of rice varieties cultivated areas based on hyperspectral remotely sensed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.