Abstract

Hidden Markov models have successfully been applied as models of discrete time series in many fields. Often, when applied in practice, the parameters of these models have to be estimated. The currently predominating identification methods, such as maximum- likelihood estimation and especially expectation-maximization, are iterative and prone to have problems with local minima. A non-iterative method employing a spectral subspace-like approach has recently been proposed in the machine learning literature. This paper evaluates the performance of this algorithm, and compares it to the performance of the expectation- maximization algorithm, on a number of numerical examples. We find that the performance is mixed; it successfully identifies some systems with relatively few available observations, but fails completely for some systems even when a large amount of observations is available. An open question is how this discrepancy can be explained. We provide some indications that it could be related to how well-conditioned some system parameters are.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.