Abstract

Extra Cytoplasmic Function (ECF) σ factor/regulatory protein (anti-σ factor) pairs govern environment mediated changes in gene expression in bacteria. The release of the ECF σ factor from an inactive σ/anti-σ factor complex is triggered by specific environmental stimuli. The free σ factor then associates with the RNA polymerase and drives the expression of genes in its target regulon. Multiple ECF σ/anti-σ pairs ensure calibrated changes in the expression profile by correlating diverse environmental stimuli with changes in the intracellular levels of different ECF σ factors. Specificity in σ/anti-σ factor interaction is thus essential for accurate signal transduction. Here we describe experiments to evaluate interactions between different M. tuberculosis σ and anti-σ proteins in vitro. The interaction parameters suggest that cross-talk between non-cognate σ/anti-σ pairs is likely. The sequence and conformational determinants that govern interaction specificity in a σ/anti-σ complex are not immediately evident due to substantial structural conservation. Sequence-structure analysis of all σ/anti-σ pairs suggest that conserved residues are not the primary determinants of σ/anti-σ interactions-a finding that suggests a potential route to set tolerance limits in interaction specificity. Non-specific σ/anti-σ interactions are likely to be biologically significant as it can contribute to heterogeneity in cellular responses in a bacterial population under less stringent requirements. This finding is relevant for synthetic biology approaches to engineer bacteria using σ/anti-σ transcription initiation modules for diverse applications in biotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.