Abstract

The specific contact resistance of Al, Ti and Ni ohmic contacts to N+ implanted 3C-SiC(100) has been investigated by means of TLM method. The p-type epitaxial layer grown on n+ substrate is multiply implanted with N ions with energy ranging from 15 to 120 keV at a total dose of 1.4×1015 cm-2 at room temperature and is subsequently annealed by RF annealer at a temperature of 1400 oC for 10 min in Ar gas flow, resulting in the sheet resistance of 130 0/sq. The deposited Al layer on the annealed sample shows the extremely low specific contact resistance of about 1×10-7 0cm2. The ohmic contacts of Ti and Ni also show the specific contact resistance of 5×10-6 and 2×10-5 0cm2, respectively. The obtained specific contact resistance is proportional to the Schottky barrier height of metal cotact to n-type 3C-SiC. The annealing of Ni ohmic contact above 600 oC results in the considerable reduction of specific contact resistance due to the silicidation of Ni.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.