Abstract

BackgroundThe point spread function (PSF) of positron emission tomography (PET) depends on the position across the field of view (FOV). Reconstruction based on PSF improves spatial resolution and quantitative accuracy. The present study aimed to quantify the effects of PSF correction as a function of the position of a traceable point-like 22Na source over the FOV on two PET scanners with a different detector design.MethodsWe used Discovery 600 and Discovery 710 (GE Healthcare) PET scanners and traceable point-like 22Na sources (<1 MBq) with a spherical absorber design that assures uniform angular distribution of the emitted annihilation photons. The source was moved in three directions at intervals of 1 cm from the center towards the peripheral FOV using a three-dimensional (3D)-positioning robot, and data were acquired over a period of 2 min per point. The PET data were reconstructed by filtered back projection (FBP), the ordered subset expectation maximization (OSEM), OSEM + PSF, and OSEM + PSF + time-of-flight (TOF). Full width at half maximum (FWHM) was determined according to the NEMA method, and total counts in regions of interest (ROI) for each reconstruction were quantified.ResultsThe radial FWHM of FBP and OSEM increased towards the peripheral FOV, whereas PSF-based reconstruction recovered the FWHM at all points in the FOV of both scanners. The radial FWHM for PSF was 30–50 % lower than that of OSEM at the center of the FOV. The accuracy of PSF correction was independent of detector design. Quantitative values were stable across the FOV in all reconstruction methods. The effect of TOF on spatial resolution and quantitation accuracy was less noticeable.ConclusionsThe traceable 22Na point-like source allowed the evaluation of spatial resolution and quantitative accuracy across the FOV using different reconstruction methods and scanners. PSF-based reconstruction reduces dependence of the spatial resolution on the position. The quantitative accuracy over the entire FOV of the PET system is good, regardless of the reconstruction methods, although it depends slightly on the position.

Highlights

  • The point spread function (PSF) of positron emission tomography (PET) depends on the position across the field of view (FOV)

  • A limitation associated with the Positron emission tomography/computed tomography (PET/CT) system is the degradation of spatial resolution that is attributed to the positron range effect, photon non-collinearity, and detector-related effects including the width of scintillator crystals, inter-crystal scattering, and inter-crystal penetration [3,4,5,6]

  • Few studies have evaluated the effects of PSF correction using the National Electrical Manufacturers Association (NEMA) body phantom located at the center of the FOV [10, 11], the relationship between FDG uptake at any location throughout the FOV and the accuracy of PSF correction remains unclear

Read more

Summary

Introduction

The point spread function (PSF) of positron emission tomography (PET) depends on the position across the field of view (FOV). The present study aimed to quantify the effects of PSF correction as a function of the position of a traceable point-like 22Na source over the FOV on two PET scanners with a different detector design. Detector-response blurring at locations far from the center of the field of view (FOV) is problematic [6, 7], in the radial and axial dimensions. The detector response in an empirical measurement that separated radial and axial components was modeled as a point spread function (PSF), and PSF information was incorporated into a three-dimensional (3D) iterative reconstruction [4, 6]. The spatial resolution of the scanner can be measured by placing a point source within the scanner and acquiring scan data at varying locations in both the radial and axial dimension [6, 8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call