Abstract

Most of the commercial upper-limb externally powered prosthetic devices are controlled by electromyography (EMG) signals. We previously proposed using the real-time change of muscle thickness detected using ultrasound, namely sonomyography (SMG), for the control of prostheses. In this study, we compared the performance of subjects using 1-D SMG signal and surface EMG signal, using a discrete target tracking protocol involving a series of letter cancellation tasks. Each task involved using grip force, EMG or SMG from a wrist extensor muscle to move a cursor to one of 5 locations on a computer screen, at the first four of which were located a letter and last of which was a word of "NEXT". The target was defined by the location showing the letter "E" and, once the subject reached this target, they were instructed to "cancel" the E from the screen, using a button operated by the contralateral hand. A paired t-test revealed that the percentage of letters correctly cancelled with force/angle and SMG signal in isometric force control, and with SMG in wrist extension were significantly higher than with EMG (P<0.05) for both isometric control and wrist extension. The results suggest that SMG signal has great potential as an alternative to EMG for prosthetic control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.