Abstract

Thiophene(s) are an important group in therapeutic applications, and sulfonamides are the most important class of carbonic anhydrase (CA) inhibitors. In this study, inhibition effects of some thiophene-based sulfonamides on human erythrocytes carbonic anhydrase I and II isoenzymes (hCA-I and hCA-II) were investigated. Thiophene-based sulfonamides used in this study showed potent inhibition effect on both isoenzymes at very small concentrations. We report on the purification of the carbonic anhydrase I and II isoenzymes (hCA-I and hCA-II) using affinity chromatography method. The inhibition effect of the thiophene-based sulfonamides was determined by IC50 and Ki parameters. A molecular docking study was performed for each molecule. Thiophene-based sulfonamides showed IC50 values of in the range of 69nM to 70µM against hCA-I, 23.4nM to 1.405µM against hCA-II. Ki values were in the range of 66.49 ± 17.15nM to 234.99 ± 15.44µM against hCA-I, 74.88 ± 20.65nM to 38.04 ± 12.97µM against hCA-II. Thiophene-based sulfonamides studied in this research showed noncompetitive inhibitory properties on both isoenzymes. To elucidate the mechanism of inhibition, a molecular docking study was performed for molecules 1 and 4 exhibiting a strong inhibitory effect on hCA-I and hCA-II. The compounds inhibit the enzymes by interacting out of catalytic active site. The sulfonamide and thiophene moiety played a significant role in the inhibition of the enzymes. We hope that this study will contribute to the design of novel thiophene-based sulfonamide derived therapeutic agents that may be carbonic anhydrase inhibitors in inhibitor design studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.