Abstract

A number of selected fungicides were evaluated to determine their efficacy for controlling collar rot disease of soybean plants caused by Sclerotium rolfsii. The experiment was conducted under the controlled condition at the Plant Pathology Laboratory and Field laboratory of BINA, Bangladesh Agricultural University campus from November 2018 to August 2019. In-vitro research was done for the observation of radial mycelial growth of S. rolfsii on potato dextrose agar (PDA), treated with five fungicides viz. Antracol 70 WP (T1), Ridomil Gold MZ 68 WP (T2), Secure 600 WG (T3), Bavistin DF (T4), Dithane M-45 (T5), and one non-treated (T0) treatment. The highest percentage of mycelial growth inhibition of S. rolfsii in PDA medium was recorded in treatment T5 (Dithane M-45) 100% and lowest in treatment T3 (Secure 600 WG) 37.33% at 6 days after inoculation. Then the selected five fungicides were again applied to pot under controlled conditions to observe the best effect of selected fungicides against collar rot pathogen of soybean plants. The inoculation was done on a variety of BINA soybean 4 in pot condition. The highest mortality percent for the collar rot disease was found in treatment T0 (controlled) 100% soybean plants conversely, the lowest mortality percent was found in treatment T5 (Dithane M-45) 27.28% besides 38.92% in T2 (Ridomil Gold MZ 68 WP), 43.42% in T1 (Antracol 70 WP), 46.18% in T3 (Secure 600 WG) and 50.00% in treatment T4 (Bavistin DF) respectively. Thus, Dithane M-45 was found superior in controlling collar rot pathogen S. rolfsii of Soybean over all other fungicides tested in both in vitro and in vivo.

Highlights

  • A number of selected fungicides were evaluated to determine their efficacy for controlling collar rot disease of soybean plants caused by Sclerotium rolfsii

  • In-vitro research was done for the observation of radial mycelial growth of S. rolfsii on potato dextrose agar (PDA), treated with five fungicides viz. Antracol 70 WP (T1), Ridomil Gold MZ 68 WP (T2), Secure 600 WG (T3), Bavistin DF (T4), Dithane M-45 (T5) and one non-treated (T0) treatment

  • The highest percentage of mycelial growth inhibition of S. rolfsii in PDA medium was recorded in treatment T5 (Dithane M-45) 100% and lowest in treatment T3 (Secure 600 WG) 37.33% at 6 days after inoculation

Read more

Summary

INTRODUCTION

S. rolfsii, has the wide host range of more than 500 species of plants including many important crops such as maize, wheat, gram, khesari, lentil, mashkalai, mungbean, sunflower, sesame, brinjal, bitter gourd, bottle gourd, cowpea, cucumber, okra, radish, tomato, radish, chilli, coriander, garlic, onion, apple, peanut, soybean, and potato ; many woody ornamentals, herbaceous annuals and perennials including ageratum, aucuba, azalea, begonia, columbine, coneflower, forsythia, hydrangea, marigold pansy, petunia, viburnum, and zinnia (Punja, 1985; Mullen, 2001) Sclerotium rolfsii is both seed borne and soil borne pathogen (Fakir et al, 1991). That’s why the present research was taken under consideration to select the effective fungicides in vitro (Laboratory experiment) and in vivo (Pot Experiment) against collar rot disease of soybean caused by S. rolfsii

MATERIALS AND METHODS
AND DISCUSSION:
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.