Abstract

AbstractPermeable biobarrier systems (PBSs) are being recognized as low‐cost passive bioremediation technologies for chlorinated organic contamination. This innovative technology can play a crucial and effective role in site restorations. Laboratory‐scale experiments were conducted to investigate the biodegradation of trichloroethylene (TCE) to ethylene in shallow groundwater through the use of a PBS enhanced by bioaugmentation at the U.S. Department of Energy's Savannah River Site (SRS). Two composts and two plant amendments, eucalyptus mulch (EM) and corncobs (CC), were examined for their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. These materials were evaluated for their (1) nutrient and organic carbon content, (2) TCE sorption characteristics, and (3) longevity of release of nutrients and soluble carbon in groundwater to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to dichloroethenes (DCEs); however, the inoculation with the TCE‐degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by‐product concentration, mostly in the form of DCEs and vinyl chloride (VC) followed by a slow degradation to ethylene. Of the tested amendments, eucalyptus mulch was the most effective at supporting the reductive dechlorination of TCE. Corncobs created a very acidic condition in the column that inhibited dechlorination. © 2007 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.