Abstract
Abstract We evaluate the soil moisture hindcasts and the reconstruction runs giving the hindcasts initial conditions in version 2.1 of the Canadian Seasonal to Interannual Prediction System (CanSIPSv2.1). Different strategies are used to initialize the hindcasts for the two CanSIPSv2.1 models, CanCM4i and the coupled Global Environmental Multiscale, version 5.1, (GEM5)–NEMO model (GEM5-NEMO), with contrasting impacts on the soil moisture initial conditions and forecast performance. Forecast correlation skill is decomposed into contributions from persistence of the initial anomalies and contributions not linked to persistence, with performance largely driven by the accuracy of the initial conditions in regions of strong persistence. Seasonal soil moisture correlation skill is significant for several months into the hindcasts depending on initial and target months, with contributions not linked to persistence becoming more notable at longer lead times. For the first 2–4 months, the quality of CanSIPSv2.1 ensemble mean forecasts tends to be higher on average during summer and fall and is comparable to that of the best performing model, whereas CanSIPSv2.1 outperforms the single models during spring and winter. For longer lead times, remote climate influences from the Pacific Ocean are notable and contribute to predictable soil moisture variability in teleconnected regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.