Abstract

We evaluated the effects of supplementing an emulsifier blend (sodium stearoyl-2-lactylate and 1, 3-diacylglycerol) in diets with different energy content (normal and 100 kcal/kg reduced) on the growth performance, meat quality, apparent total tract digestibility (ATTD), and blood lipid profile of broiler chickens. Male broiler chickens (n = 1024), with an initial body weight (BW) of 43.60±0.2 g, were used in a 35-day trial. Broiler chickens of similar body weight were randomly allocated to one of four treatment groups in a 2 × 2 factorial arrangement with two levels of dietary energy content and with or without emulsifier blend. Broiler chickens fed on emulsifier blend supplemented diet had a higher body weight gain (BWG) during d 7–21, d 21–35, and overall period (P<0.05), higher BW during overall period (P<0.05), and lower feed conversion ratio (FCR) during d 7–21, d 21–35, and overall period (P<0.05) compared with broilers fed on diets without emulsifier supplementation. Broiler chickens fed on the diet with low energy content had a lower BWG during d 1–7, d 21–35, and overall period (P<0.05), lower BW during overall period, and higher FCR during d 1–7, d 21–35, and overall period (P<0.05). The ATTD of energy tended to decrease in response to low-energy content diet (P<0.10). Drip loss at 7 d post slaughter tended to decrease in response to dietary emulsifier blend supplementation (P<0.10). However, no interactive effects of dietary energy content and emulsifier blend supplementation (P>0.10) were observed on the growth performance, ATTD, blood lipid profiles, meat quality and relative organ weight. In conclusion, dietary emulsifier blend supplementation could improve growth performance, while low dietary energy content would decrease growth performance and ATTD of energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.