Abstract
Crack propagation due to rolling contact fatigue (RCF) could be a significant potential challenge to the integrity of railway rails because it may lead to a serious disaster. Fatigue cracks subjected to cyclic rolling contact force experience a complex non-proportional mixed loading and complicated boundary condition. In the present research, complex crack opening/closure/sliding/locked behaviors as the cyclic contact loading movement is analyzed considering liquid lubrication action on rail surfaces as well as crack faces. Based on a series of FE analyses, the calculations of the effective SIF ranges for RCF cracks under certain contact loading and boundary conditions are proposed in the form of polynomial functions which will be appropriately used to predict RCF crack growth rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.