Abstract
To compare 6 diffusion-weighted imaging (DWI) MRI models for response evaluation in patients with pancreatic ductal adenocarcinoma (PDAC). DWI images were acquired at 3T for b=0-600s/mm2 in fourteen patients with advanced PDAC during 2 separate pretreatment sessions and 9 patients with (borderline) resectable PDAC pre and post neoadjuvant chemoradiation. Data was fitted with a mono-exponential (ADC), double mono-exponential to b=0 and 100s/mm2 (ADCfast), and b=100 and 600s/mm2 (ADCslow), IVIM model with D* free (D, f, D*) and fixed (D, f), tri-exponent (D, f1, f2), and stretched exponent model (DDC, α). Goodness of fit (adjusted R2), tumor to normal tissue contrast, repeatability (coefficient of variation), and parameter correlations (Spearman's rho) were assessed for the repeated measures. Treatment induced changes were assessed and compared to the repeatability. The mono-exponential modelhad the lowest goodness of fit in both tumor (R2=0.94) and normal-appearing pancreas (R2=0.88). Tumour to normal tissue contrast was higher for the 'non-diffusion' parameters (ADCfast, f, D*, f1, f2, α), with better repeatability for the diffusion parameters (ADC, ADCslow, D, DDC). Diffusion parameters were strongly correlated between the models (rho ≥0.81) and showed a general treatment associated increase. All models were able to identify individual treatment effects, showing a change greater than the repeatability in 5 out of 9 patients for at least one of the parameters. Individual treatment evaluation is possible with all investigated DWI models, with treatment associated changes exceeding the repeatability. The double monoexponential fit with ADCfast and ADCslow is able to discriminate between non-diffusion and diffusion related effects, is measured fast and can be performed on most commercial scanners, making it an attractive alternative for the more advanced multiparametric models in radiotherapy treatment evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology*Biology*Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.