Abstract

The purpose of this study was to assess sister chromatid exchange (SCE) levels and cell cycle kinetics in various murine tissues following MIC exposure. Following exposure of mice to MIC, these parameters were measured in bone marrow and alveolar macrophages labeled with BrdUrd in vivo and in peripheral blood and spleen lymphocytes cultured in the presence of BrdUrd in vitro. Target concentrations of MIC were 2, 15, and 30 ppm (3 hr). Neither elevated SCE frequencies nor inhibition of cell cycling were evident in lipopolysaccharide (LPS)- or concanavalin A (ConA)-stimulated spleen lymphocytes, or in LPS-stimulated peripheral blood lymphocyte (PBL) cultures from mice exposed for 3 hr to MIC concentrations as high as 30.5 ppm. Inhibition of cell cycling and poor culture success rates were apparent in ConA-stimulated PBLs following MIC exposures as low as 2.3 +/- 0.4 ppm for 3 hr. At the lowest MIC dose employed, the cycling characteristics of bone marrow and alveolar macrophages were not altered, and SCE frequencies were at control levels. However, severe cell cycle inhibition was observed in these tissues at MIC concentrations of 15 ppm or greater. A marker of cytotoxicity at this dose was a high frequency (approximately 33-90%) of occurrence of first division cells containing a late-replicating Y chromosome. Despite its apparent cellular toxicity, MIC is not genotoxic as measured by SCE analysis in the tissues examined in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.