Abstract

To improve the numerical evaluation of weakly singular integrals appearing in the boundary element method, a logarithmic Gaussian quadrature formula is usually suggested in the literature. In this formula the singular function is expressed in terms of the distance between source point and field point, which is a real variable. When an anisotropic elastic solid is considered, most of the existing fundamental solutions are written in terms of complex variables. When the problems with holes, cracks, inclusions, or interfaces are considered, to suit for the shape of the boundaries usually a mapping function is introduced and then the solutions are expressed in terms of mapped complex variables. To deal with the trouble induced by the complex variables, in this study through proper change of variables we develop a simple way to improve the evaluation of weakly singular integrals, especially for the problems of anisotropic elastic solids containing holes, cracks, inclusions, or interfaces. By simple matrix expansion, the proposed method is extended to the problems with piezoelectric or magneto-electro-elastic solids. By using the dual reciprocity method, the proposed method employed for the elastostatic fundamental solution can also be applied to the elastodynamic analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.