Abstract

Single frequency code and single frequency code and phase GPS precise point positioning scenarios using various ionospheric sources are evaluated by assessing their performances with respect to dual frequency solutions. These include Canadian regional and global vertical total electron content (VTEC) maps produced by Natural Resources Canada and different International GNSS Service (IGS) coordination or analysis centres. Furthermore, two of the most commonly used single layer ionospheric mapping functions applied for conversion of VTEC to slant TEC are evaluated with each and every one of the ionospheric VTEC sources. Results show that the quality of code only solutions depends on ionospheric activity level, and the TEC map and mapping function selected. Code and phase single frequency solutions are also improved when assisted with an external ionosphere source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.