Abstract

This study demonstrated that a combined heterotrophic and autotrophic denitrification (HAD) process is highly effective for the simultaneous removal of acetate, nitrate, and sulfide at an efficiency of 100, 80, and 100%, respectively. In the HAD system, simultaneous sulfide, acetate, and nitrate removals were observed, which indicated that heterotrophic and autotrophic denitrification occurred simultaneously. When the sulfide was existed in HAD reactor, the main product of sulfide biooxidation was S(0). Once the sulfide was exhausted, the sulfate concentration in the HAD reactor increased and became the main end product. These results provided an alternative method to control the end sulfide biooxidation product by online monitoring sulfide concentration. Nearly half (43%) of the total clones in our mix-trophic reactor were amphitrophy denitrifiers. The autotrophic denitrifiers, heterotrophic denitrifiers, and amphitrophy denitrifiers coexisted in the HAD reactor to complete the denitrification process. Retrieved bacterial 16S rRNA gene clones affiliated with uncultured Xanthomonadaceae, Thauera, Thiobacillus, and Chromatiales were dominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.