Abstract

It is generally accepted that growth of eutectic silicon in aluminium–silicon alloys occurs by a twin plane re-entrant edge (TPRE) mechanism. It has been proposed that modification of eutectic silicon by trace additions occurs due to a massive increase in the twin density caused by atomic effects at the growth interface. In this study, eutectic microstructures and silicon twin densities in samples modified by elemental additions of barium (Ba), calcium (Ca), yttrium (Y) and ytterbium (Yb) (elements chosen due to a near-ideal atomic radii for twinning) in an A356.0 alloy have been determined by optical microscopy, thermal analysis, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Addition of barium or calcium caused the silicon structure to transform to a fine fibrous morphology, while the addition of yttrium or ytterbium resulted in a refined plate-like eutectic structure. Twin densities in all modified samples are higher than in unmodified alloys, and there are no significant differences between fine fibrous modification (by Ba and Ca) and refined plate-like modification (by Y and Yb). The twin density in all modified samples is less than expected based on the predictions by the impurity induced twining model. Based on these results it is difficult to explain the modification with Ba, Ca, Y and Yb by altered twin densities alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call