Abstract

Aim: This study evaluated the shear bond strength and microleakage of two repair systems for porcelain fused metal restoration. Materials and Methods: Forty cylindrical samples were fabricated in nickel-chromium alloy and 40 samples in feldspathic porcelain. Twenty samples of Ni-Cr alloy and 20 samples of porcelain disks were embedded in the acrylic resin, except its examination surface. The remaining 20 samples of Ni-Cr alloy and 20 samples of porcelain prepared for testing microleakage were covered with double-faced transparent tape on one surface and resin composite was bonded with the CoJet-3M and Ceramic Repair-Ivoclar. The samples were stored in distilled water for 24 h at 37°C before thermocycling at 5° to 55°C for 300 cycles and again stored at 37°C for 8 days. Shear bond strength test were performed in a universal testing machine with cross head speed of 1 mm/min. The data was analyzed using one way ANOVA and the Tukey honestly significant difference (HSD) test (P Results: Mean bond strength values for G 1 M 1 B 35.77 ± 2.52 was the highest followed by G 1 P 1 B 33.23 ± 3.24, G 2 P 2 B 32.47 ± 3.53 and the lowest showed in G 2 M 2 B 24.70 ± 2.87. Test of significant showed that the mean value was significant among the groups (P Conclusion: For the metal surfaces, the greatest strengths were achieved with use of the CoJet-System. The bond strength of the repair systems could not be related to the degree of leakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.