Abstract
In recent years, following the outbreak of the COVID-19 pandemic, there has been a significant increase in cases of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and related deaths worldwide. Despite the pandemic nearing its end due to the introduction of mass-produced vaccines against SARS-CoV-2, early detection and diagnosis of the virus remain crucial in preventing disease progression. This article explores the rapid identification of SARS-CoV-2 by implementing a multimode plasmonic refractive index (MMRI) optical sensor, developed based on the split ring resonator (SRR) design. The Finite Difference Time Domain (FDTD) numerical solution method simulates the sensor. The studied sensor demonstrates three resonance modes within the reflection spectrum ranging from 800 nm to 1400 nm. Its material composition and dimensional parameters are optimized to enhance the sensor’s performance. The research indicates that all three resonance modes exhibit strong performance with high sensitivity and figures of merit. Notably, the first mode achieves an exceptional sensitivity of 557 nm/RIU, while the third mode exhibits a commendable sensitivity of 453 nm/RIU and a Figure of Merit (FOM) of 45 RIU−1. These findings suggest that the developed MMRI optical sensor holds significant potential for the early and accurate detection of SARS-CoV-2, contributing to improved disease management and control efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.