Abstract

Conventionally cast turbine blades of Inconel 713C, from a military gas turbine aircraft engine, have been investigated with regard to service-induced microstructural damage and residual creep life time. For cast turbine blades, service life is defined by statistical values. The statistical methods can prove to be uneconomical, because safe limits must be stated with regard to the statistical probability that some blades will have higher damage than normal. An alternative approach is to determine the service-induced microstructural damage on each blade, or a representative number of blades, to better optimize blade us-age. Ways to use service-induced γ rafting and void formation as quantified microstructural damage pa-rameters in a service lifetime prediction model are suggested. The damage parameters were quantified, in blades with different service exposure levels, and correlated to remaining creep life evaluated from creep test specimens taken from different positions of serviced blades. Results from tests with different rejuvenation treatments, including hot isostatic pressing andJor heat treatment, are discussed briefly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.