Abstract
ABSTRACT The red-edge bands of Sentinel-2 allow for a greater diversity of spectral Vegetation Indices (VIs) to be calculated and used for vegetation characterization. We evaluated the utility of a selection of 40 VIs to derive Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and fraction of vegetation Cover (fCover) of winter wheat crop using regression method. We calibrated models for specific winter wheat development stages and compared the predictions with all-season models. The most useful VIs could be grouped into several types: (1) indices which use green and NIR band, (2) indices based on red edge bands, (3) indices which use red and NIR band and (4) the MCARI/OSAVIre index. It was found that fAPAR and fCover could be predicted with good accuracy using all-season models (rRMSE of 14% and 23% respectively), while LAI showed lower accuracy (rRMSE = 45%). The LAI model calibrated over the tillering stage was recommended for usage in the early stages of crop development. Compared with the existing methods for biophysical variables retrieval from Sentinel-2 data (i.e. the Level2B processor in SNAP) the regression approach based on VIs showed to be a viable alternative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.