Abstract

Cyanobacteria are potent microorganisms for sustainable photo-biotechnological production processes, as they are depending mainly on water, light, and carbon dioxide. Persisting challenges preventing their application include low biomass, as well as insufficient process stability and productivity. Here, we evaluate different cyanobacteria to be applied in a novel capillary biofilm reactor. Cultivated as biofilms, the organisms self-immobilize to the reactor walls, reach high biomass and enable long and robust production processes. As ‘best performer’ Tolypothrix sp. PCC 7712 emerged from this study. It reached the highest biomass in the reactors with 62.6 ± 6.34 gBDWL−1, produced 0.14 μmole H2 mgChl a−1h−1 under N2-fixing conditions, showed optimal surface coverage of the available growth surface, and only minor detachment in contrast to other tested species, highlighting its potential for photobiotechnology in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.