Abstract

HPLC–ICP-MS based on ion-paired reversed phase chromatography for the selenium speciation using the mixture of 1-butanesulfonic acid (BA) and trifluoroacetic acid (TFA) as the mixed ion-pairing reagents was developed and applied to selenium-enriched pakchoi (Brassica chinensis Jusl var parachinensis (Bailey) Tsen & Lee). Several conditions of ion-paired reversed phase HPLC–ICP-MS, such as pH of the mobile phase, concentration of ion pairing reagents, types and length of analytical column, and flow rate of the mobile phase, were optimised for five selenium species; selenate (Se(VI)), Selenite (se(IV)), selenocysteine (SeC), Se-methylselenocysteine (SeMC) and selenomethionine (SeM). The results showed that the optimum conditions for pH, BA and TFA condition, type of separating column and flow rate, were 4.5, 8mM, 4mM, C18 (250mm length ×4.6mm I.D) and 1.2mLmin−1, respectively. These conditions archived separation of the organic selenium species. The limits of detection (LOD) and quantitation (LOQ) of each selenium species were lower than 5 and 16ng Se mL−1, respectively. Furthermore, the recoveries of most selenium species were good, except for SeC. In this research, selenium-enriched pakchoi was cultivated by supplementing inorganic selenium from selenate into sand. The result showed that inorganic selenium, SeMC, SeM and several unknown species were found in selenium-enriched pakchoi sprouts by using the proposed method. Thereby, the biotransformation of selenate in pakchoi was similar to other Brassicaceae plants such as kale and broccoli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.