Abstract

ABSTRACT A shake table test using a full-scale 2-story steel moment frame was conducted to investigate the peak floor acceleration (PFA) and the peak component acceleration (PCA), which directly affect the seismic demand on nonstructural elements. The main focus of this study was to evaluate the effects of structural and component nonlinearity on the nonstructural seismic demand. The PFA reduction suggested by ASCE 7-22 to account for structural nonlinearity was shown to be larger than the experimental results for low-to-moderate ductility levels. The analysis on the resonant PCA showed the importance of structural nonlinearity on the elastic C AR (=PCA/PFA). The high resonant PCA around the fundamental period of the elastic test frame (7 times PFA) was effectively decreased as the test frame experienced a moderate level of ductility; PCA was lowered by 36% and 25% on the 2nd and roof floors, respectively. The effect of component yielding on the PCA was evaluated based on the test results of steel racks mounted on flexible and rigid access floors. The PCA reduction depending on the component ductility level was less than the relevant provisions of ASCE 7-22, and the reason was discussed from the perspective of the pinched hysteretic behavior of the tested specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.