Abstract

AbstractAntecedent soil moisture or soil moisture status has a great impact on hydrological processes. Hydraulic redistribution (HR), a widely observed phenomenon, is defined as water distributed (typically at night) from moist soil to drier soil via plant roots, which plays an important role in soil moisture replenishment. Knowledge on seasonal patterns of HR and on the relationship between HR and soil water use is not fully understood. We investigated temporal variations in HR and total daily water use (Δθ) at stands of camphor and peach by monitoring soil moisture content in a humid region in eastern China. HR at the three locations reached its maximum values in summer (0.68 mm d−1 to 1.15 mm d−1) at depths of 15 cm and 35 cm. Redistributed water replenished 41% of water depleted in the soil at a 5–45‐cm depth. Interestingly, normalized HR (i.e., HR/Δθ) showed a constant pattern during the growing season implying it is independent of seasonal climate alterations. This also indicated that HR had a stable effect on the replenishment of daily water use. Positive linear relationships between HR and Δθ were found at three measuring locations (camphor: R2 = .35, p < .01; peach1: R2 = .57, p < .01; peach2: R2 = .63, p < .01), suggesting a relatively stable inherent linkage between HR and Δθ. This study suggested that hydrological processes involving soil moisture status or antecedent soil moisture, needs to take the HR effect into account across timescales from intraday to seasonal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.