Abstract

Screw withdrawal and flexural strength were evaluated for Dendrocalamus asper and Gigantochloa levis bamboo species to explore the possibility of their use as structural material in place of wood. Dry bamboo strips and 4-mm-thick oil palm trunk veneer (OPTV) were processed into thin laminates and hot-pressed using urea formaldehyde resin to produce bamboo-OPTV hybrid biocomposites. Bamboo furniture is far more resistant to damage than traditional hardwoods. Bamboo is even used in cutting boards for this reason. Even though there have been some reports on the mechanical enhancement of the bamboo-based composites, so far there has been no comprehensive study on the screw pulling and flexural strength of bamboo-based hybrid composites. The results revealed a stronger correlation of the bamboo hybrid under screw withdrawal and flexural strength, but there was a weaker correlation in the mechanical properties of the bamboo hybrid due to the random selection of laminate from different bamboo species. Furthermore, test results clearly showed that bamboo-OPTV hybrid biocomposites can be used as an alternative to wood and wood-based composites for furniture applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call