Abstract

The MODIS (Moderate Resolution Imaging Spectroradiometer) primary productivity products are evaluated against observed Above-ground Net Primary Production (AGNPP) in the semi-arid Senegal 2001. MODIS net primary productivity (NPP) modelling is a light use efficiency (LUE) based approach incorporating constraints on vegetation productivity arising from simulated radiation, water demand and temperature data from NASA's Data Assimilation Office (DAO). Annually integrated MODIS PSN (MOD17A2 net photosynthesis, Collection 4) explains more of the observed biomass variation ( r 2 = 0.77) than MODIS fAPAR (fraction Absorbed Photosynthetically Active Radiation, Collection 4) ( r 2 = 0.72), indicating the effect of including the canopy stress scalar ( ε s) based on DAO data combined with modelled maintenance respiration costs (of leaf and fine roots). Annual MODIS NPP (MOD17A3, Collection 4 (C4) and Collection 4.5 (C4.5)) including growth respiration and live wood maintenance respiration costs and modified DAO input (C4.5) however increases the residual unexplained observed AGNPP variance (C4 NPP; r 2 = 0.49) (C4.5 NPP; r 2 = 0.37). The overall quality of the annual NPP MODIS C4 and C4.5 products are moderate for the semi-arid Senegal because of the annual respiration cost modelling and a change in C4.5 biome-specific parameters stored in a Biome Properties Look-Up Table (BPLUT) is the main contributor to the observed discrepancy between C4 and C4.5 NPP. The dynamic range of the values of all MOD17 products was too low when compared to observed AGNPP. An estimate of canopy water stress (SIWSI; Shortwave Infrared Water Stress Index) derived from MODIS channels 2 and 6 and photosynthetically active radiation (PAR) irradiance derived from geostationary METEOSAT data were tested for primary production modelling using a stepwise linear regression analysis. PAR irradiance was combined with MODIS fAPAR into APAR (Absorbed Photosynthetically Active Radiation) explaining 79% of the observed AGNPP variation. Introducing SIWSI significantly increased the explained variance of observed AGNPP ( r 2 = 0.89). MODIS-derived percentage tree cover was tested as a predictor based on the hypothesis that tree cover provides information on differences in respiratory costs between trees and grasses thereby accounting for variations in the LUE conversion efficiency ε. No significant reduction in residual unexplained AGNPP variance was found. Earth observation based derivation of PAR and canopy water stress from SIWSI suggest potential improvements to primary production models in semi-arid biomes that can be implemented in general NPP modelling LUE methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call