Abstract
ABSTRACT This article evaluates selected sensitivity analysis methods applicable to risk assessment models with two-dimensional probabilistic frameworks, using a microbial food safety process risk model as a test-bed. Six sampling-based sensitivity analysis methods were evaluated including Pearson and Spearman correlation, sample and rank linear regression, and sample and rank stepwise regression. In a two-dimensional risk model, the identification of key controllable inputs that can be priorities for risk management can be confounded by uncertainty. However, despite uncertainty, results show that key inputs can be distinguished from those that are unimportant, and inputs can be grouped into categories of similar levels of importance. All selected methods are capable of identifying unimportant inputs, which is helpful in that efforts to collect data to improve the assessment or to focus risk management strategies can be prioritized elsewhere. Rank-based methods provided more robust insights with respect to the key sources of variability in that they produced narrower ranges of uncertainty for sensitivity results and more clear distinctions when comparing the importance of inputs or groups of inputs. Regression-based methods have advantages over correlation approaches because they can be configured to provide insight regarding interactions and nonlinearities in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Human and Ecological Risk Assessment: An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.