Abstract

Tandem mass spectrometry-based proteotyping allows characterizing microorganisms in terms of taxonomy and is becoming an important tool for investigating microbial diversity from several ecosystems. Fast and automatable sample preparation for obtaining peptide pools amenable to tandem mass spectrometry is necessary for enabling proteotyping as a high-throughput method. First, the protocol to increase the yield of lysis of several representative bacterial and eukaryotic microorganisms was optimized by using a long and drastic bead-beating setting with 0.1 mm silica beads, 0.1 and 0.5 mm glass beads, in presence of detergents. Then, three different methods to obtain greater digestion yield from these extracts were tested and optimized for improve efficiency and reduce application time: denaturing electrophoresis of proteins and in-gel proteolysis, suspension-trapping filter-based approach (S-Trap) and, solid-phase-enhanced sample preparation named SP3. The latter method outperforms the other two in terms of speed and delivers also more peptides and proteins than with the in-gel proteolysis (2.2 fold for both) and S-trap approaches (1.3 and 1.2 fold, respectively). Thus, SP3 directly improves tandem mass spectrometry proteotyping.

Highlights

  • Taxonomical identification of microorganisms has been considerably simplified by the use of mass spectrometry

  • Proteotyping by MALDI-TOF mass spectrometry relies on recording the mass profiles of small molecular weight and basic polypeptides released from the sample and comparing them with those recorded previously for thousands of microorganisms under similar conditions (Lavigne et al, 2013; Grenga et al, 2019)

  • With the objective to find the best compromise for simultaneous protein extraction from diverse microorganisms, we evaluated the protein extraction yield obtained with different bead mixtures that we named Beads mixture A” (BMA), Beads mixture B” (BMB), and Beads mixture C” (BMC)

Read more

Summary

Introduction

Taxonomical identification of microorganisms has been considerably simplified by the use of mass spectrometry. Proteotyping by MALDI-TOF mass spectrometry relies on recording the mass profiles of small molecular weight and basic polypeptides released from the sample and comparing them with those recorded previously for thousands of microorganisms under similar conditions (Lavigne et al, 2013; Grenga et al, 2019). This approach is simple, rapid and low cost, but requires first to isolate each microorganism on an agar plate. In this case, proteotyping consists in assigning protein or peptide sequences analyzed by mass spectrometry to a taxonomical database for taxonomical identification of microorganisms

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call