Abstract

Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery, reduce roadway excavation and improve mining safety. In this method, roof cutting is the key process for stress relief, which significantly affects the stability of the formed roadway. This paper presents a directionally single cracking (DSC) technique for roof cutting with considerations of rock properties. The mechanism of the DSC technique was investigated by explicit finite element analyses. The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment. On this basis, the optimized DSC technique was tested in the field. The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock, thus, achieve directionally single cracking on the roadway roof. The DSC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway. Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.