Abstract

Modelling of radionuclide transport in fractured media is a primary task for safety evaluation of a deep nuclear waste repository. A performance assessment (PA) model has been derived from site characterization data with the aim of improving confidence for quantifying transport of sorbing radionuclides at a safety time scale of 106 y. The study was conducted on a 200 × 200 × 200 m semi-synthetic fractured block, providing a realistic system derived from the Aspo Hard Rock Laboratory (Sweden) dataset. The block includes 5,632 fractures ranging from 0.5 to 100 m in length and a heterogeneous matrix structure (fracture coating, gouge, mylonite, altered and non-altered diorite). The PA model integrates steady-state flow conditions and transport of released radionuclides during the safety time scale. An original simulation method was developed involving Eulerian flow and transport within fracture planes with a mixed hybrid finite element scheme and a semi-analytical source term to account for heterogeneous matrix diffusion. Total mass flux of radionuclides (conservative to strongly sorbing) was computed. A method to simplify the system was demonstrated, leading to a major path of 12 fractures. This is mainly due to the low connectivity of the fracture network. Matrix diffusion and sorption proved to have major impact on block retention properties for PA conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.