Abstract

The incorporation of antibacterial agents into dental restorative materials is a promising strategy for secondary caries prevention. Previously, Carolacton affected Streptococcus mutans biofilm formation on composite materials in vitro. The present study evaluated secondary caries formation adjacent to Carolacton-containing composites and conventional restorative materials using an artificial biofilm model. Standardized cavities were prepared in bovine dentin-enamel samples (n = 175) and restored with various dental materials (Tetric EvoCeram [T], GrandioSo composite without [G] and with Carolacton [GC], Grandio Flow without [F] and with Carolacton [FC], GrandioSo containing sodium fluoride [GNaF], and Ketac Fil [K]). After artificial aging, S. mutans was grown on the samples for 7 days. The investigation of gap sizes and secondary caries formation was performed using confocal laser scanning microscopy and transversal microradiography. Median gap size in enamel was 9.4 µm (interquartile range 7.9–12.7). Compared to all other groups significant differences in gap sizes could be observed for Ketac Fil (p < 0.001; Mann-Whitney test). Only GrandioSo composite containing 30% sodium fluoride and Ketac Fil showed significantly smaller lesion areas in enamel (p < 0.001; Mann-Whitney test) than all other groups which was confirmed by the mineral loss data (p < 0.001; Mann-Whitney test). Based on the present in vitro results, it seems that Carolacton-containing composite in the current formulation within the shown simplified monoculture biofilm model is not able to prevent caries formation compared to fluoride-releasing restorative materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call