Abstract

BackgroundWidespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses).ResultsOver 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source.ConclusionsRB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home.

Highlights

  • Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD)

  • Vital to the control of vector-borne disease (VBDs) is an understanding of the ecology and behaviour of species responsible for pathogen transmission [2]. This is crucial for tackling emerging VBDs where data on vector biology are scarce. One such example is the emergence of the primate malaria causative agent Plasmodium knowlesi in human populations in Southeast (SE) Asia over the past decade, with an epicentre in the State of Sabah in Malaysian Borneo [3, 4]

  • Plasmodium knowlesi accounts for the largest proportion of malaria cases in people in Malaysian Borneo [3]

Read more

Summary

Introduction

Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Vital to the control of vector-borne disease (VBDs) is an understanding of the ecology and behaviour of species responsible for pathogen transmission [2]. This is crucial for tackling emerging VBDs where data on vector biology are scarce. One such example is the emergence of the primate malaria causative agent Plasmodium knowlesi in human populations in Southeast (SE) Asia over the past decade, with an epicentre in the State of Sabah in Malaysian Borneo [3, 4]. Development of integrated vector control approaches with capacity to target this suite of mosquito VBDs would be of benefit in Malaysia and the numerous other settings where they co-occur

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.