Abstract
The concerns regarding the occurrence of pharmaceuticals in wastewater treatment plants have increased in the last decades. Gatifloxacin (GAT), the fourth generation of fluoroquinolones, has been widely used to treat both Gram-positive and Gram-negative bacteria and has a limited metabolization. The present study aimed to evaluate ozonation as a technique to degrade GAT. An exchange A UHPLC-MS/MS by an UHPLC-MS/MS method was used to quantify the residual of GAT and to assess its degradation products. The removal efficiency was higher under alkaline conditions (pH = 10), reaching up to 99% of GAT after 4 min. It was also observed that the first ozone attack on the GAT molecule was through the carboxylic group. In contrast, under acid conditions (pH = 3), the ozone attack was first to the piperazinyl ring. The antimicrobial activity was evaluated using Escherichia coli and Bacillus subtilis as test organisms, and it was observed that the residual activity reduced most under alkaline conditions. In contrast, the best condition to remove the residual toxicity evaluated for the marine bacteria V. fischeri was the acidic one. Due to this, ozonation seemed to be an exciting process to remove GAT in aqueous media.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.