Abstract

Abstract Characterization of complicated reservoir architecture with multiple compartments, baffles and tortuous connectivity is critical; additionally, reservoir fluids undergo dynamic processes (multiple charging, biodegradation and water/gas washes) that lead to complex fluid columns with significant property variation. Accurate understanding of both reservoir and fluids is critical for reserve assessment, field management and production planning. In this paper, a methodology is presented for reservoir connectivity analysis, which integrates reservoir fluid property distributions with an asphaltene Equation of State (EoS) model developed recently. The implications of reservoir fluid equilibrium are treated within laboratory experimentation and equation of state modeling. In addition to cubic EoS modeling for light end gradients, the industry's first asphaltene EoS the Flory-Huggins-Zuo EoS is successfully utilized for asphaltene gradients. This new EoS has been enabled by the resolution of asphaltene nanoscience embodied in the Yen-Mullins model. Specific reservoir fluid gradients, such as gas-oil ratio (GOR), composition and asphaltene content, can be measured in real time and under downhole conditions with downhole fluid analysis (DFA) conveyed by formation tester tools. Integration of the DFA methods with the asphaltene EoS model provides an effective method to analyze connectivity at the field scale, for both volatile oil/condensate gas reservoirs with large GOR variation, and black oil/mobile heavy oil fields with asphaltene variation in dominant. A field case study is presented that involves multiple stacked sands in five wells in a complicated offshore field. Formation pressure analysis is inconclusive in determining formation connectivity due to measurement uncertainties; furthermore, conventional PVT laboratory analysis does not indicate significant fluid property variation. In this highly under-saturated black oil field, measurement of asphaltene content using DFA shows significant variation and is critical for understanding the reservoir fluid distribution. When integrated with the asphaltene EoS model, connectivity across multiple sands and wells is determined with high confidence, and the results are confirmed by actual production data. Advanced laboratory fluid analysis, such as two-dimensional gas chromatography, is also conducted on fluid samples, which further confirms the result of the DFA and asphaltene EoS model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call