Abstract

Introduction: The basic pathophysiologic derangement of chronic kidney disease (CKD) begins with the loss of nephrons, leading to renal hemodynamic changes, eventually causing a reduced nephron count and renal hypoxia. The purpose of this study was to observe the renal oxygenation and renal hemodynamics of patients with CKD using blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) and intrarenal Doppler ultrasonography (IDU). Methods: The study enrolled 39 patients with stage 1–4 CKD and 19 healthy volunteers (HVs). Based on their estimated glomerular filtration rate (eGFR), CKD patients were divided into 2 subgroups: a mild renal impairment (MI) group and a moderate to severe renal impairment (MSI) group. We monitored the participants’ mean cortical T2* (COT2*) and mean medullary T2* (MET2*) values on BOLD-MRI, and measured the peak systolic velocities (PSVs), end-diastolic velocities (EDVs), renal resistive index (RI), and kidney length by IDU. We also recorded clinical indicators such as age, sex, body mass index (BMI), 24-h urinary protein (24-h Upr), serum creatinine (sCr), blood urea nitrogen (BUN), and eGFR. BOLD-MRI, IDU measurements, and the clinical indicators were compared in CKD patients and HVs by the analysis of variance and Kruskal-Wallis H test. Spearman’s correlation was used to assess the relationship between data from BOLD-MRI and IDU and clinical indicators. Results: The COT2* values were significantly higher than the MET2* values in the HV, MI, and MSI groups. COT2*, MET2*, EDV, PSV, and kidney length gradually decreased in the HV, MI, and MSI groups (all p < 0.05), whereas RI and 24-h Upr gradually increased (both p < 0.05). Spearman correlation analysis showed that COT2* and MET2* were significantly positively correlated with eGFR, PSV, EDV, and kidney length but were significantly negatively correlated with sCr, BUN, and 24-h Upr (all p < 0.05). There was no correlation observed between the COT2* and MET2* and the RI and BMI values. Conclusions: Renal oxygenation and blood flow velocities were found declined as the CKD stage progressed. The BOLD-MRI and IDU techniques may have clinical value by measuring intrarenal oxygenation and renal blood perfusion to judge the severity of renal damage in patients with CKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call