Abstract

Reliability of water distribution networks (WDNs) has received much attention in recent years due to progressive aging of infrastructures and climate change. Several reliability indicators, focusing on hydraulic aspects rather than water quality, have been proposed in literature. Reliability is generally assessed resorting to well established methods coupling hydraulic simulations and stochastic techniques that describe the WDNs hydraulic performance and component availability respectively. Two main algorithms are employed to simulate WDNs: the demand driven approach (DDA) that disregards the physical relationship between actual water demand and nodal pressure, and the pressure driven approach (PDA) that explicitly incorporates it. In this paper, we show how the choice of hydraulic solver may affect reliability indicators. We modify existing quantitative indicators at nodal and network level, and define novel indicators to consider water quality aspects. These indicators are evaluated for three example WDNs; discrepancies between results obtained with the two approaches depend on network size, feeding scheme and skeletonization. Results suggest to use with caution the DDA for reliability assessment at both local and global level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.