Abstract
The West Anatolia Extensional Zone, which has a width of about 300 km, is located within the Alpine-Himalayan belt and is one of the regions with intense seismic activity in the world. The most important geomorphological structures in this area are three main graben structures resulting from regional N-S extension since the Early Miocene. These structures are the E-W trending Buyuk Menderes, Kucuk Menderes, and Gediz grabens. Soke Basin is located at the SW end of the Buyuk Menderes graben. The lineaments which control the NW of Soke Basin have a length of approximately 40 km and have been defined as the Priene-Sazli Fault (PSF). The PSF is seismically active, and the last large earthquake (the Soke-Balat earthquake; Ms: 6.8) was produced on July 16th of 1955. The ancient city of Priene, which was located in the study area, suffered from destructive earthquakes (in the 4th century and 2nd century BC, in the 2nd century AD, during the Byzantine period and after the 12th century BC). This study aims to reveal the effect of the PSF on the morphotectonic evolution of the region and the relative tectonic activity of the fault. To this end, it was the first time the stream length gradient index (SL: 130–1303), mountain-front sinuosity (Smf: 1.15–1.96), valley floor height and valley width ratio (Vf: 0.27–1.66), drainage basin asymmetry (AF: 0.15–0.76), hypsometric curve (HC) and hypsometric integral (HI: 0.22–0.86) and basin shape index (Bs: 1.04–5.75) along the mountain front that is formed by the PSF. Using a combination of the mountain-front sinuosity (Smf), valley floor height and valley width ratio (Vf), it is found that the uplift ratio in the region is not less than 0.05 mm/yr and the relative tectonic activity of PSF is high. According to the relative tectonic activity index (Iat) obtained from geomorphic indices, the southwest part of the PSF is relatively more active than the northeast part. As a result, I posit that the PSF has the potential to produce earthquakes in the future similarly to those that were produced in the past, and that the most destructive earthquakes will likely occur on the southwest segments of the fault according to geomorphic indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.