Abstract
Surface-modified dicalcium phosphate anhydrous particles that were treated with an ion-rich solution and a silane-coupling agent were evaluated as fillers for resin composites. The physiochemical properties of these composites were characterized. The properties of the specimens as reinforcements, which were modified using various surface conditions and 30% and 50% filler to composite mass ratios (30% and 50%) were measured before and after they were immersed in water for 24h. All groups were of the same strength and showed no significant changes after immersion. However, the groups showed a significant increase in the modulus after 24h of immersion. The filler surfaces with nanocrystallites had the highest modulus, whereas the fillers treated with silanization had the lowest ion concentration in the solution and highest remineralization ability after immersion. The strength and brittleness were increased by the modified fillers with nanocrystallites on the surfaces and by the increased amount of fillers in the resin composites. Filler surfaces that were modified with silica hindered interfacial interactions and consequently had better flexibility and less brittleness during the light-curing process. Surface modifications of reinforced particles using nanocrystallites and silica films have superior potential applications in restorative medicine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.