Abstract
Abstract WLAN IEEE 802.11ac is one of the wireless network technologies that can be used for ITS (Intelligent Transport Systems) needs, in particular for providing vehicle passengers with access to the data transmission network. To evaluate the performance of such automotive wireless access networks, it is necessary to perform experimental measurements. By conducting the throughput measurements in WLAN-based automotive communications testbed, it has been observed that the throughput of the communication channel decreases and the received signal becomes weaker as the vehicle moves away from the wireless access point. The aim of the research is to verify theoretically whether there is a correlation between the received signal power level and the throughput of the communication channel depending on the distance to the transmitter. To calculate the received signal power depending on the distance to the transmitter, a log-normal signal propagation model can be used, which takes into account random signal fluctuations that are described by the Nakagami distribution. Further, based on the obtained results, Shannon’s theorem can be used to calculate the maximum theoretical throughput of the communication channel. The analysis of the obtained results shows that a correlation exists between the received signal power level and the throughput of the communication channel depending on the distance to the transmitter. The performed theoretical calculations justify the experimentally obtained results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.